Page 62 - 07
P. 62

–1
                      The peaks at about 3000…2750 cm  were characteristic of–CH 3 bonds. The si-
                  milar peaks in the FTIR spectra of the treated and untreated samples showed that there
                  was no change in the basic structure of nanocomposite membranes. The increments in
                                                    –1                  –1
                  the absorption bands of C–O at 1030 cm  and C=O at 1770 cm  were attributed to the
                                                             –1
                  creation of unsaturated – C=C− bonds at 1645 cm  after plasma treatment. It was also
                  observed from FTIR spectra that C–C and C–H bands decreased after plasma treatment.
                  It indicated that the cross linking phenomenon enhanced during plasma treatment. The
                                                           –1
                  Co NPs showed its characteristic peak at 765 cm  for nanocomposite membrane.
                      We  investigated  surface  morphologies  of  Co  nanocomposite  membrane  using
                  SEM. The SEM images of nanocomposite membrane are shown in Fig. 6. Scanning
                  Electron Microscopic (SEM) analysis was done using Scanning electron microscope
                  (Carl ZEISS EVOR-18) operated at 20 kV. Plasma treated nanocomposite membrane
                  can  be  compared  with  untreated  one  which  shows  the  improvement  in  porosity  and
                  roughness.
                      CONCLUSIONS
                      Color of solution changed from green to brownish as plant extract was mixed in
                  the aqueous solution of the cobalt ion complex, thus giving the primary indication of
                  Cobalt nanoparticles formation, which was further confirmed by analyzing these NPs
                  by different techniqueі like UV-Vis spectrophotometer, FTIR, TEM and SEM.
                      The UV-Visible spectrum was obtained in a visible range of 300 to 800 nm. A ty-
                  pical absorbance peak at 405 nm of cobalt nanoparticles was obtained due to the sur-
                  face Plasmon vibrations of cobalt nanoparticles. Particle size of biosynthesized cobalt
                  nanoparticles  was  further  confirmed  by  TEM  and  SEM  measurements  which  were
                  about 20…28 nm. The FTIR measurement was carried out to identify the possible inter-
                  action  between  biomolecule  and  CoNPs.  The  FTIR  measurements  of  biosynthesized
                                                                                         –1
                  cobalt nanoparticles showed the bands of about 763; 1605; 1722; 3165 and 3679 cm .
                      The  pristine  PMMA  membranes  and  Co  nanocompositemembrane  (5  weight%)
                  were prepared by the solution cast method. The Ar plasma treatment technique applied
                  here  showed  considerable  improvement  in  the  chemical  and  surface  properties  of
                  membranes. Plasma treatment helped in increasing the flux whereas doping modified
                  the  surface  properties.  The  SEM  images  showed  high  porosity  and  roughness  after
                  plasma  treatment.  As  nanocomposite  membranes  were  prepared  without help  of any
                  support, it could be concluded that PMMA had considerable strength as compared to
                  other polymeric materials like polyamide which could not be prepared without the help
                                                                                –1
                  of support. The increments in the absorption bands of C–O at 1030 cm  and C=O at
                         –1                                                               –1
                  1770 cm  were attributed to the creation of unsaturated – C=C− bonds at 1645 cm
                  after plasma treatment, while decrease in intensity of C–C and C–H bands indicated
                  that cross linking phenomenon enhanced after plasma treatment.
                      РЕЗЮМЕ.  Досліджено  вплив  іонно-плазмової  обробки  на  властивості  мембрани  з
                  нанокомпозитного полімеру. Наночастинки кобальту одержано хімічним синтезом. Мем-
                  брани завтовшки 20 mm виготовлено нанесенням нанокомпозитного полімеру з розчину з
                  подальшою  іонно-плазмовою  обробкою.  Мембрани  вивчено  перед  та  після  їх  обробки
                  плазмою методами оптичної мікроскопії, сканівної електронної мікроскопії та інфрачер-
                  воної Фур’є-спектроскопії. Виявлено, що іонно-плазмова обробка – ефективний засіб по-
                  ліпшення поверхневих та хімічних властивостей мембран з нанокомпозитних матеріалів.

                      РЕЗЮМЕ. Исследовано влияние ионно-плазменной обработки на свойства мембра-
                  ны из нанокомпозитного полимера. Наночастицы кобальта получены химическим синте-
                  зом. Мембраны толщиной 20 mm изготовлены нанесением нанокомпозитного полимера с
                  раствора с последующей ионно-плазменной обработкой. Мембраны изучены до и после
                  обработки плазмой методами оптической микроскопии, сканирующей электронной мик-
                  роскопии и инфракрасной Фурье-спектроскопии. Выявлено, что ионно-плазменная обра-



                  68
   57   58   59   60   61   62   63   64   65   66   67