Page 59 - Zmist-n2-2015
P. 59

cracks reach a critical dimension and the sample is not able to sustain any additional
                  strain (the fracture takes place, forming the cross-section crack) (Fig. 7b–d).
                      CONCLUSION
                      Analyzing the results of fatigue tests of sintered 316L stainless steel samples with
                  various density (porosity from 26 to 41%) it is possible to draw important conclusions
                  to predict the damage state as well as the cracking processes in the material. In the pro-
                  cess of fatigue damage development modelling in the samples made of sintered porous
                  316L stainless steel two stages can be distinguished. The first one concerns the damage
                  accumulation in the bridges between the pores, taking place on the microscale. It is cru-
                  cial to take into account the stress concentration and plastic strain in bridges (on the me-
                  soscale). The second stage is connected with binding of pores (cracking of subsequent
                  bridges between them), which has to be considered on the mesoscale. This gives a similar
                  effect of increasing the susceptibility of the material (decrease of Young’s modulus and
                  the maximum values of the stress in the load cycle) for the case of evenly spaced cracks
                  growth in the material, which is attributed to fatigue loading of constant amplitude.
                      РЕЗЮМЕ. Наведено результати втомних випробовувань зразків аустенітної сталі 316L
                  з рівнями пористості 26, 33 і 41%. Проаналізовано параметри, отримані із петлі гістерези-
                  су в циклі навантаження – зміну модуля Юнґа, максимальних і мінімальних напружень.
                  Використовуючи залежність Mенсона–Коффіна, визначили втомну міцність пористих ма-
                  теріалів з різним ступенем загущення.
                      РЕЗЮМЕ. Представлены результаты усталостных испытаний образцов аустенитной
                  стали 316L с уровнями пористости 26, 33 и 41%. Проанализированы параметры, получен-
                  ные из петли гистерезиса в цикле нагрузки – изменения модуля Юнга, максимальных и
                  минимальных напряжений. Используя зависимость Mенсона–Коффина, определили уста-
                  лостную прочность пористых материалов с различным уровнем плотности.

                      This paper was supported by the Bialystok University of Technology under the re-
                  search project № MB/WM/6/2013.
                  1.  Chawla N. and Deng X. Microstructure and mechanical behavior of porous sintered steel
                     // Mat. Sci. Eng. – 2005. – A390. – P. 98–112.
                  2.  Fatigue of sintered steels (Fe–1.5Mo–3Mn–0.7C) / H. Khorsand, S. M. Habibi, K. Janghor-
                     ban et al. // Mater. and Struct. – 2004. – 37. – P. 335–341.
                  3.  Sudhakar K. V. Fatigue behavior of a high density powder metallurgy steel // Int. J. Fatigue.
                     – 2000. – 22. – P. 729–734.
                  4.  Dewidar M. M., Khalil K. A., and Lim J. K. Processing and mechanical properties of porous
                     316L stainless steel for biomedical applications // Transactions of Nonferrous Metals Society
                     of China. – 2007. – 17. – P. 468–473.
                  5.  Grądzka-Dahlke M., Dąbrowski J. R., and Dąbrowski B. Characteristic of the porous 316 stain-
                     less steel for the friction element of prosthetic joint // Wear. – 2007. – 263. – P. 1023–1029.
                  6.  Kurgan N. and Varol R. Mechanical properties of P/M 316L stainless steel materials // Pow-
                     der Technology. – 2010. – 201. – P. 242–247.
                  7.  Ryan G., Pandit A., and Apatsidis D. P. Fabrication methods of porous metals for use in
                     orthopeadic applications // Biomaterials. – 2006. – 27. – P. 2651–2670.
                  8.  Fatigue crack growth characterization and simulation of porous steel / C. Verdu, S. Cara-
                     bajar, G. Lormand, R. Fougères // Mat. Sci. Eng. – 2001. – A319–321. – P. 544–549.
                  9.  Teoh S. H. Fatigue of biomaterials: a review // Int. J. Fatigue. – 2000. – 22. – P. 825–837.
                  10. Dobrzański  L.  A.  Leksykon  materiałoznawstwa.  Praktyczne  zestawienie  norm  polskich,
                     zagranicznych i międzynarodowych. – Warszawa: Verlag Dashofer, 2012.
                  11. ASTM E606-80/ E 606M-12 Standard Test Method for Strain-Controlled Fatigue Testing.
                  12. Coffin L. R. A study of the effects of cyclic thermal stresses on ductile metal // Trans. ASME.
                     – 1954. – 76. – P. 931–950.
                  13. Manson S. S. Behavior of Materials under Conditions of Thermal Stress. – NACA TN-2933, 1953.
                  14. Morrow J. D. Cyclic plastic stain energy and fatigue of metals // Internal Friction Damping
                     and Cyclic Plasticity. – ASTM, 1965. – STP378. – P. 45–84.
                                                                             Received 24.07.2014
                  58
   54   55   56   57   58   59   60   61   62   63   64