Page 114 - Zmist-n4-2015
P. 114

диффундируют в електролит, чем Zr из электролита в защитный слой. По сравнению с
                  окислительной  средой  (воздухом),  в  восстановительной  (водородсодержащей)  взаимная
                  диффузия элементов Ce, Gd и Zr более интенсивная, а глубина их проникновения больше
                  в 1,5–3 раза.
                      SUMMARY. The influence of reducing and oxidizing media on mutual diffusion of chemi-
                  cal elements between (Се, Gd)О 2–d  barrier (protective) cathode layer and YSZ electrolyte of a
                  solid oxide fuel cell during annealing at a temperature of 1400°С was investigated. Using the
                  energy dispersive X-ray spectroscopy of the annealed specimens it was established that during
                  annealing in reducing medium, Ce and Gd were diffusing into the electrolyte more intensively
                  than Zr from the electrolyte into the protective layer. Mutual diffusion of Ce, Gd, and Zr was
                  more intensive in reducing (hydrogenous) medium and their penetration depth was 1.5–3 times
                  higher as compared with the oxidizing one (air).

                      Автори вдячні фонду DAAD (Deutscher Akademischer Austauschdienst) за  фі-
                  нансову  підтримку  для  виконання  цієї  роботи  в  Дослідному  центрі  Юліх  (For-
                  schungszentrum Jűlich) у Німеччині.
                  1.  Ferrite-based  perovskites  as  cathode  materials  for  anode-supported  solid oxide  fuel  cells.
                     Part  I.  Variation  of  composition  /  A. Mai,  V. Haanappel,  S. Uhlenbruck,  F. Tietz,
                     D. Stоеver // Solid State Ionics. – 2005. – 176. – P. 1341–1350.
                  2.  Ferrite-based  perovskites  as  cathode  materials  for  anode-supported  solid oxide  fuel  cells.
                     Part II. Influence of the CGO interlayer / A. Mai, V. Haanappel, F. Tietz, D. Stoever // Solid
                     State Ionics. – 2006. – 177. – P. 2103–2107.
                  3.  Performance  of  LSCF  cathodes  in  cell  tests  /  F. Tietz,  V. Haanappel,  A. Mai,  J. Mertens,
                     D. Stoever // J. Power Sources. – 2006. – 156. – P. 20–22.
                  4.  Zhou X.-D., Scarfino B., and Anderson H. U. Electrical conductivity and stability of Gd-
                     doped ceria / Y-doped zirconia ceramics and thin films // Solid State Ionics. – 2004. – 175.
                     – P. 19–22.
                  5.  Mitsuyasu H., Nonaka Y., and Eguchi K. Analysis of solid state reaction at the interface of
                     yttria-doped  ceria/yttria-stabilized  zirconia  //  Solid  State  Ionics. –  1998.  –  113–115.
                     – P. 279–284.
                  6.  Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes
                     / H. Yokokawa, N. Sakai, T. Horita, K. Yamai, M. E. Brito, H. Kishimoto // J. of Alloys and
                     Compounds. – 2008. – 452, № 1. – P. 41–47.
                  7.  Kawada T. and Mizusaki J. Current electrolytes and catalyst / Eds. W. Vielstich, A. Lamm,
                     and  H. A. Gasteiger  //  Handbook  of  Fuel  Cells:  Fundamentals,  Technology,  Applications.
                     – Chichester: J. Wiley and Sons, 2003. – P. 987–1001.
                                                                            Одержано 24.03.2015


























                                                                                         113
   109   110   111   112   113   114   115   116   117   118   119